
Graph-related Problems & Tasks:

Compared Methods:
 GCN, GAT, Path: stack 30 GCN/GAT/Path-GNN layers to build the model.
 Homo-Path: apply the homogeneous prior to the “Path” model.
 Iter-Path: adopt the iterative module to control the iteration number of the 

GNN layer in the “Path” model.
 Iter-Homo-Path: integrate all proposals. 
Our model, Iter-Homo-Path, successfully generalize w.r.t. graph scales.

Ablation Studies show that each of our components is beneficial.

Interpretable Behaviors: Our model learned an optimal stopping criterion to 
schedule the iterations for the unweighted shortest path problem.
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Current GNNs lack such generalizability
Current GNNs lack the generalizability  w.r.t. graph scales (graph sizes, graph 
diameters, edge weights, etc.) for at least two reasons:

 GNNs with restricted depth and width cannot solve many 
simple graph-related problems on graphs of larger scales [1].

 The graph properties deviate greatly for graphs of different 
scales, thus the distributions of the internal representations that 
encode those graph properties in GNNs. 

And the performance of classical neural network modules 
(e.g., the MLPs in GNNs) are usually highly degraded on those 
out-of-range inputs. 

The locality nature of GNNs
(i.e., message passing)
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Shallow GNNs cannot even send messages 
between nodes whose distances are large.

0
Graph properties to be encoded by internal representations (e.g., distances)

10 100 1000

Problem Setup: generalize w.r.t. graph scales
Problems met in practice are of diversified scales. People can learn 
knowledge from small-scale data and apply it to much larger-scale data. 

Given the expressiveness of graphs, many problems can be reduced to graph-
related problems. Therefore, we want models that can generalize w.r.t. graph 
scales (graph sizes, graph diameters, edge weights, etc.).

Tested on Larger Graphs
(e.g. 5000 nodes)

Trained on Smaller Graphs
(e.g. ≤ 40 nodes)

Generalize w.r.t. Scales

Iterative Graph Neural Networks
To address the fixed layer number issue, we introduce IterGNN to achieve adaptive and unbounded 
computation steps.
 Typical graph algorithms, e.g., Dijkstra’s algorithm for shortest path computation, are iterative 

so that they can handle problems of arbitrary scales.

 IterGNN introduces an adaptive and differentiable stopping criterion to allow flexible GNN 
layers.

 Our stopping condition is adaptive to the inputs, supports arbitrarily large iteration numbers, 
and, interestingly, is able to be trained in an end-to-end fashion without any direct supervision.
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Homogeneous Graph Neural Networks
To address the issue of out-of-range encoding, we notice that 
 The solutions to many graph-related problems, such as shortest path, TSP, and maximum 

flow, are homogeneous w.r.t. the input graph weights, i.e., the solution scales linearly with the 
magnitudes of the input weights. 

We prove that 
 Generalization errors are bounded if both 

neural networks and the target function are 
homogeneous under proper conditions.

 Universal approximators of homogeneous 
functions are easy to build, e.g., 
𝑅𝑅𝑒𝑒𝑙𝑙𝑢𝑢(𝑊𝑊𝑥𝑥+𝑏𝑏)⇒𝑅𝑅𝑒𝑒𝑙𝑙𝑢𝑢(𝑊𝑊𝑥𝑥) in MLPs.
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Solutions to shortest path are homogeneous.
(i.e., if we multiply the edge weights by 2, the shortest 
path lengths are also multiplied by 2.)

𝑓𝑓 𝜆𝜆𝑥𝑥 ≡ 𝜆𝜆𝑓𝑓 𝑥𝑥 ,∀𝜆𝜆 > 0, 𝑥𝑥 ∈ 𝑅𝑅2
(another example of homogeneous functions)

Behaviors of MLP Behaviors of HomoMLP
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