

Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous Graph Neural Networks

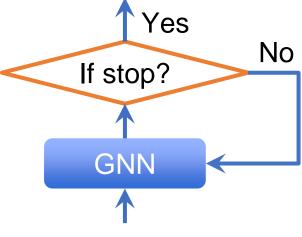


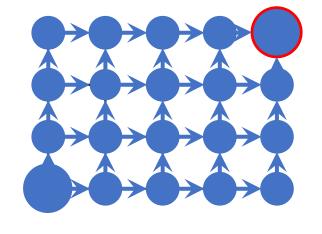
Hao Tang, Zhiao Huang, Jiayuan Gu, Bao-Liang Lu, Hao Su

Iterative Graph Neural Networks

To address the fixed layer number issue, we introduce IterGNN to achieve adaptive and unbounded

• **Typical graph algorithms,** e.g., Dijkstra's algorithm for shortest path computation, are iterative





IterGNN can generalize to graphs of larger scales

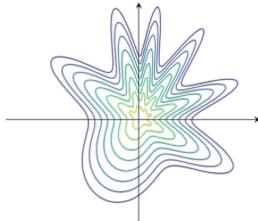
• IterGNN introduces an adaptive and differentiable stopping criterion to allow flexible GNN Algorithm 1: Iterative module. *g* is the stop-

ping criterion and f is the iteration body **input:** initial feature x; stopping threshold ϵ $k \leftarrow 1$ while $\prod_{i=1}^{k-1} (1 - c^i) > \epsilon$ do $h^k \leftarrow f(h^{k-1})$ $c^k \leftarrow q(h^k)$ $k \leftarrow k + 1$ end while return $h = \sum_{j=1}^{k-1} \left(\prod_{i=1}^{j-1} (1-c^i) \right) c^j h^j$

• Our stopping condition is adaptive to the inputs, supports arbitrarily large iteration numbers, and, interestingly, is able to be trained in an end-to-end fashion without any direct supervision.

Homogeneous Graph Neural Networks

• The solutions to many graph-related problems, such as shortest path, TSP, and maximum flow, are homogeneous w.r.t. the input graph weights, i.e., the solution scales linearly with the

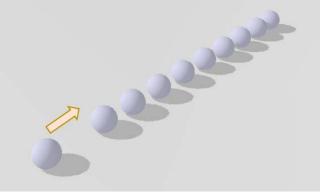


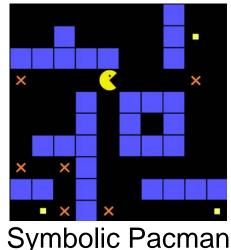
$r_{ain}(x)$	Gener Homo P _{train} (x)
of-distribution ected Behaviors	Unexpected Be

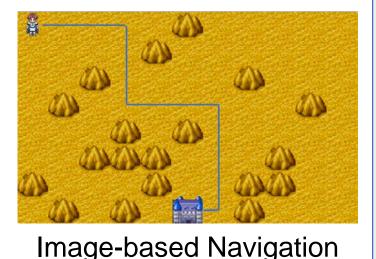
Behaviors of MLP Behaviors of HomoMLP

Experiment Results

Graph-related Problems & Tasks:







Physical Simulation

Compared Methods:

- GCN, GAT, Path: stack 30 GCN/GAT/Path-GNN layers to build the model.
- *Homo-Path:* apply the homogeneous prior to the "Path" model.
- *Iter-Path:* adopt the iterative module to control the iteration number of the
- GNN layer in the "Path" model.
- Iter-Homo-Path: integrate all proposals.

Our model, Iter-Homo-Path, successfully generalize w.r.t. graph scales. Table 1: Generalization performance on graph algorithm learning and graph-related reasoning. Models are trained on graphs of smaller sizes (e.g., within [4, 34) or $\leq 10 \times 10$) and are tested on graphs of larger sizes (e.g., 50, 100, 500, 16×16 or 33×33). The metric for the shortest path and TSP is the relative loss. The metric for component counting is accuracy. The metric for physical simulation is the mean square error. The metric for image-based navigation is the success rate.

simulation is the mean square entri. The means for mage cused having attem is the success rate.									
	Graph Theory Problems				Graph-related Reasoning				
	Shortest	t Path	Component Cnt.		TSP	Physical sim.		Image-based Navi.	
Models	ER	Lob	ER	Lob	2D	50	100	16×16	33 imes 33
GCN [38]	0.1937	0.44	0.0%	0.0%	0.52	42.18	121.14	34.2%	28.9%
GAT [39]	0.1731	0.28	24.4 %	0.0%	0.18	>1e4	>1e4	56.7%	44.5%
Path (ours)	0.0003	0.29	82.3%	77.2%	0.16	20.24	27.67	85.6%	65.1%
Homo-Path (ours)	0.0008	0.27	91.9%	83.9%	0.14	20.48	21.45	87.8%	69.3%
Iter-Path (ours)	0.0005	0.09	86.7%	96.1%	0.08	0.13	1.68	89.4%	78.6%
Iter-Homo-Path (ours)	0.0007	0.02	99.6%	97.5%	0.07	0.07	2.01	98.8%	91.7%

Table 2: Generalization performance on the shortest path problem with lobster graphs. During training, node numbers are within [4, 34) for unweighted problems (whose metric is the success rate), and edge weights are within [0.5, 1.5) for weighted problems (whose metric is the relative loss).

Generalize w.r.t. sizes and diameters - unweighted					w.r.t. magnitudes - weighted				
Generalize	20	100	500	1000	5000	[0.5, 1.5)	[1,3)	[2, 6)	[8, 24)
GCN [38]	66.6	25.7	5.5	2.4	0.4	0.31	0.37	0.49	0.56
GAT [39]	100.0	42.7	10.5	5.3	0.9	0.13	0.29	0.49	0.55
Path (ours)	100.0	62.9	20.1	10.3	1.6	0.06	0.22	0.44	0.54
Homo-Path (ours)	100.0	58.3	53.7	50.2	1.6	0.03	0.03	0.03	0.03
Iter-Homo-Path (ours)	100.0	100.0	100.0	100.0	100.0	0.01	0.04	0.06	0.08

Ablation Studies show that each of our components is beneficial.

Iter-Homo-Path 100.0					
Homo-Path Iter-Path					
53.7	48.9				
ACT-Homo-Path	Iter-Homo-GAT				
52.7	2.9				
Shared-Homo-Path	Iter-Homo-GCN				
91.7	1.4				

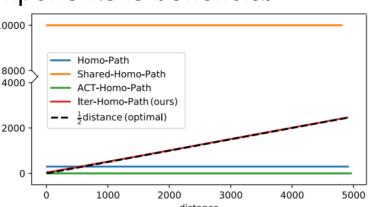


Table 3: Ablation studies of generalization per- Figure 4: The iteration numbers of GNN layers formance for the shortest path problem on lobster w.r.t. the distances from the source node to the graphs with 1000 nodes. Metric is the success rate. target node for the shortest path problem.

Interpretable Behaviors: Our model learned an optimal stopping criterion to schedule the iterations for the unweighted shortest path problem.

Reference

Tang, H., Z. Huang, J. Gu, B.-L. Lu, H. Su. Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous Graph Neural Networks, NeurIPS 2020.

[1] Loukas, A. What graph neural networks cannot learn: depth vs width. In International Conference on Learning Representations. 2020.