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We seek steps toward Al systems that Input Jointly learn neural symbol grounder and symbolic programs through Metrics for different perspective of models’ performances
learn to symbolically process weak task supervisions. » Program synthesize: program success rate

X g
perceptual input, e.g., g,z = argmin |y - [z1(g(®)], * Symbol grounding: symbolic loss

* Pixels > Curves/Parts > 3D shape it | _ > o
+ lidar > Objects/Proximities-> Action 9().z  Qut-of-distribution generalizability: generalization loss
z's entry € {0,1}

- - . . . Train on datasets with digits < 5, while test on digits = 5
eurosymbolic Program Synthesis  Symbols where x is the perception input, v is the output, ( 5 Bits = 5)
;sfcr:pfigwfr;i;;ols - g()is a’'symbol grounder’ neural net that generates intermediate Datasets use CIFAR-10 to build perception inputs. Programs are
. synthesized programs: symbolic output s = g(x) given the perception input x, drawn uniformly from formulas such as (s2+s3)*s1-s2.
symbols - Outputs * zisaprogram to synthesize that transform symbols to predicted Drogram success rate | symbolic loss | test Toss | generalization Toss
Challenges output y = [z](s). ROAP (our model) 459 / 500 0.00086 0.11 0.07
° Large Combinator\/ Search Space; w/0 program, i.e., CNN+MLP 0/500 0.95 0.11 1.03
» containing both w/o amortized inference 136 / 500 0.059 0.20 0.19
.+ continuous neural networks weights; Methodology for ameliorate optimization difficulties w/o gumbel-softmax 8./ 500 0.52 0.33 4.40
. discrete programs; ’ w/ S}(;nta)}cl-Tree 345 / 500 0.04 0.16 0.22
' o ' ; w/ depth=10 58 / 500 0.90 0.14 2.12
* lll-posed problem for symbol/concept discovery. Relax the_ S-pace of Z s entries from {0,1} to w/ depth=3 56 / 500 110 016 208
* (e.g., how to prevent neural networks from [O,'I] for JOInt Iearnlng
directly | ing the input-output | d . i7zati ' -|i ' :
rectly learning the input-output mapping an Overparameterization by straight-line coding Experimental Results show that

setting the program to identity?).

* Probabilistic VAE Framing for Amortized  Joint learning of symbols & programs is feasible.

Small-scale Task Example Inference & Regularize & Sampling:  All techniques are helpful, including multi-tasking with amor-

— tized inference, overparameterization, gumbel-softmax, and the
A small-scale that involves both perception and p(yIx) = 2,p(ylx, chpgz) | th ||3 . 5
programmatic reasoning. Introducing multi-tasking to > E, llogp(y‘ , Z)p(2) ELBO program eng r.egu driZer. .
alleviate the ill-posed problem for symbol discovery. q(z|y.X) » Programmatic prior enables much better out-of-distribution

= E4[logp(ylx, z)] + E4[logp(2)] + Hlq]
> [, [logp(ylx, z)] +Egllog p(z)], (Reconstruction + Regularizer)

Solving inductive reasoning tasks grounded in generalizability of the models.

perception. inferring a simple formula with noisy q
perceptual inputs such as images. | o regrmieeh
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: (oo 8B o : I. Symbol \ performances; Also see the improvements w.r.t. the relative
| @:3’ @:5, :6 Tl.y—x0+x1><x2 | Grounder,g - ~N O m I IE .. . . d
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Grounded Symbols, s Y LHESIZEL T Parametrization, z outputs, § » Effectiveness of program length prior: Improve interpretability
Solving this problem involves jointly learning to 3 5 6 . ff¢ " 15 but not hurt performances when successfully learned (blue line);
. - - SO - I11. Different;
perceive ?jnd Par;se Image Input into S\/mﬁO“C forlf‘? 5 6 3 Interplre:fn[[?]? (,)e — 30 can largely boost the performances when not successfully
crez?:?wogriltnhnittli\clzet;/stl? ecover programs fat expal 6 3 5 ) 718 | |F learned before (orange line) but not always (green line).
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