
From Perception to Programs: 
Regularize, Overparameterize, and Amortize 

Hao Tang, Kevin Ellis, Cornell University

Neurosymbolic Program Synthesis Problem Setup Experimental Results

We seek steps toward AI systems that 
learn to symbolically process 
perceptual input, e.g.,
• Pixels à Curves/Parts à 3D shape
• lidar à Objects/Proximitiesà Action

Neurosymbolic Program Synthesis
• neural components:

perception à symbols
• synthesized programs:

symbols à Outputs

Small-scale Task Example

Input

Output

Symbols

A small-scale that involves both perception and
programmatic reasoning. Introducing multi-tasking to
alleviate the ill-posed problem for symbol discovery.
Solving inductive reasoning tasks grounded in 
perception. inferring a simple formula with noisy 
perceptual inputs such as images. 

Solving this problem involves jointly learning to 
• perceive and parse image input into symbolic form 
• reason inductively to recover programs that explain 

each arithmetic task. 

!"# = 33
"#! = 23
#!" = 21

!"# = 21
#!! = 21
"!# = 21

!=?,"=?,#=? T1: ?, T2: ?

!=3,"=5,#=6

T1: T2:

T1: ! = #! + #"×##
T2: ! = #!×#" + ##

Interpretable Representations Synthesized Programs

Joint Learning by our model

Challenges
• Large combinatory search space;
• containing both

• continuous neural networks weights;
• discrete programs;

• Ill-posed problem for symbol/concept discovery.
• (e.g., how to prevent neural networks from

directly learning the input-output mapping and
setting the program to identity?).

Jointly learn neural symbol grounder and symbolic programs through
weak task supervisions.

𝑔∗ ⋅ , 𝑧∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
" ⋅ ,%

%!& '()*+ ∈ -,.

𝑦 − 𝑧 𝑔 𝑥 ,

where 𝑥 is the perception input, 𝑦 is the output,
• 𝑔(·) is a ’symbol grounder’ neural net that generates intermediate 

symbolic output 𝑠 = 𝑔(𝑥) given the perception input 𝑥,
• 𝑧 is a program to synthesize that transform symbols to predicted

output /𝑦 = 𝒛 (𝒔).

cc

Task-2

23
21

33

Inputs, ! Outputs, "

I. Symbol
Grounder, ! II. Program 

Synthesizer, "
3 5 6
5 6 3
6 3 5

Grounded Symbols, #

III.Differentiable
Interpreter, ⋅ ⋅

15
30
18

Predicted
outputs, "$

IV. Loss, ℒ

Task-1

Synthesized Program
 Parametrization, %

…

…

Methodology for ameliorate optimization difficulties

• Relax the space of z’s entries from {0,1} to
[0,1] for joint learning

• Overparameterization by straight-line coding
• Probabilistic VAE Framing for Amortized

Inference & Regularize & Sampling:
𝑝 𝑦 𝑥 = ∑! 𝑝 𝑦 𝑥, 𝑧 𝑝 𝑧

≥ 𝔼" log # 𝑦 𝑥, 𝑧 #(!)
"(!|',))

, ELBO

= 𝔼" log 𝑝 𝑦 𝑥, 𝑧 + 𝔼" log 𝑝(𝑧) + ℍ 𝑞
≥ 𝔼" log 𝑝 𝑦 𝑥, 𝑧 +𝔼" log 𝑝(𝑧) , (Reconstruction + Regularizer)

!!

!"

!#

Exec ", !, 4

Exec ", !, 5

Exec ", !, & − 1

Exec ", !, &

"$%& "$'(

)$),+ *$),+

id

"$,-

Metrics for different perspective of models’ performances
• Program synthesize: program success rate
• Symbol grounding: symbolic loss
• Out-of-distribution generalizability: generalization loss

(Train on datasets with digits< 5, while test on digits≥ 5)
Datasets use CIFAR-10 to build perception inputs. Programs are
drawn uniformly from formulas such as (s2+s3)*s1-s2.

Experimental Results show that
• Joint learning of symbols & programs is feasible.
• All techniques are helpful, including multi-tasking with amor-

tized inference, overparameterization, gumbel-softmax, and the 
program length regularizer.

• Programmatic prior enables much better out-of-distribution
generalizability of the models.

• Effectiveness of overparameterization: Necessary for good
performances; Also see the improvements w.r.t. the relative
overparameterization degree.

• Effectiveness of program length prior: Improve interpretability
but not hurt performances when successfully learned (blue line);
can largely boost the performances when not successfully
learned before (orange line) but not always (green line).

From Perception to Programs: Regularize, Overparameterize, and Amortize MAPS ’22, June 13, 2022, San Diego, CA, USA

Table 1. The performances of models for the neurosymbolic program synthesis problem. Our model (ROAP) success-
fully learned the interpretable symbolic representations (negligible symbolic loss) and the programs that operate on them (high
program success rate). The learned model can predict outputs from input images with small errors on both within-distribution
test dataset (test loss) and out-of-distribution test dataset with unseen larger digits (generalization loss). All techniques,
including the programmatic prior, multi-tasking with amortized inference, and overparameterization, are bene�cial in terms of
the joint learning performances by comparing our model with the baselines.

program success rate symbolic loss test loss generalization loss
ROAP (our model) 459 / 500 0.00086 0.11 0.07

w/o program, i.e., CNN+MLP 0 / 500 0.95 0.11 1.03
w/o amortized inference 136 / 500 0.059 0.20 0.19
w/o gumbel-softmax 8 / 500 0.52 0.33 4.40

w/ Syntax-Tree 345 / 500 0.04 0.16 0.22
w/ depth=10 58 / 500 0.90 0.14 2.12
w/ depth=3 56 / 500 1.10 0.16 2.08

Table 2. E�ects ofmultitask learning for joint learning.

success rate symbolic loss
500 tasks 33.3% 0.00086
1 task 10.5% 0.039

Figure 5. Overparameterization is necessary for robust
program recovery. Programs get depth corresponds to the
number of possible lines of code: increasing sketch depth
increases overparameterization. In each cell, we show the
percentage of programs of a given size successfully synthe-
sized

local optimums.We furthermodify the degrees of overparam-
eterization by changing the depth ! of program sketches and
report their performances for tasks with di�erent di�culties
in Figure 5. The results �rst show that more overparame-
terized models perform better than less overparameterized
models. Moreover, less overparameterized models perform
better on easier tasks, i.e., when the relative overparameteri-
zation degree (the size of paragram sketch versus the size of
correct programs) becomes larger, which also demonstrates
the e�ectiveness of overparameterization.

E�ectiveness of gumbel so�max. As shown in Table 1,
models without gumbel softmax perform much worse than
ours. It is because the stochastic sampling noises introduced
by gumbel softmax help models to explore a larger solution
space and then �nd a better converged point while using the
local optimizers such as Adam.

E�ectiveness of program length prior. We demonstrate
the e�ects of our program length regularizer in three scenar-
ios in Figure 6. When the model has already learned good
symbols and program synthesizers (blue lines), applying the
program length prior will not hurt the models’ performances
while can largely improve the models’ interpretability by in-
ducing synthesizing shorter programs. The averaged length
of synthesized programs reduces from 21.6 to 9.6 after ap-
plying the regularization, while the program success rate
increases from 431 to 455 / 500. For runs with poor per-
formances, applying the program length regularization can
largely boost the performances of models by providing more
programmatic prior for salvageable runs (the orange lines),
but not always (the green lines). Speci�cally, for salvageable
runs, the program success rate increases from 4 to 412 / 500
and the symbolic loss decreases from 1.23 to 0.066.

4.3 Out-of-distribution Generalizability by Programs
We �nally demonstrate the improvements of out-of-distribution
generalizability of models from the programmatic prior using
the generalization loss metric. The generalization loss met-
ric evaluates the models’ performances on unseen symbols
(0.6 to 1.0) that are larger than the symbols (0.1 to 0.5) used
during training for a new task, having already seen those
symbols used in old tasks. As shown in Table 1, without the
programmatic prior, models cannot learn the correct sym-
bolic representations and synthesize the correct programs
even though training and test losses are low. Because of the
large �exibility of neural networks, models without a pro-
grammatic prior can easily over�t and achieve low training

� 
 �� �
 ��
�����

�

���

���

���

	��

��
��
�

�
���
��
��
���

�
��
��

��

� � �� �� ��
	����

��

��

��

��

��


�
��
��
�
��

��
��
�


