

From Perception to Programs: Regularize, Overparameterize, and Amortize

Hao Tang, Kevin Ellis, Cornell University

Neurosymbolic Program Synthesis

Input

Symbols

Output

We *seek steps toward* Al systems that learn to symbolically process perceptual input, e.g.,

- Pixels → Curves/Parts → 3D shape
- lidar → Objects/Proximities → Action

Neurosymbolic Program Synthesis

- neural components: perception → symbols
- synthesized programs: symbols → Outputs

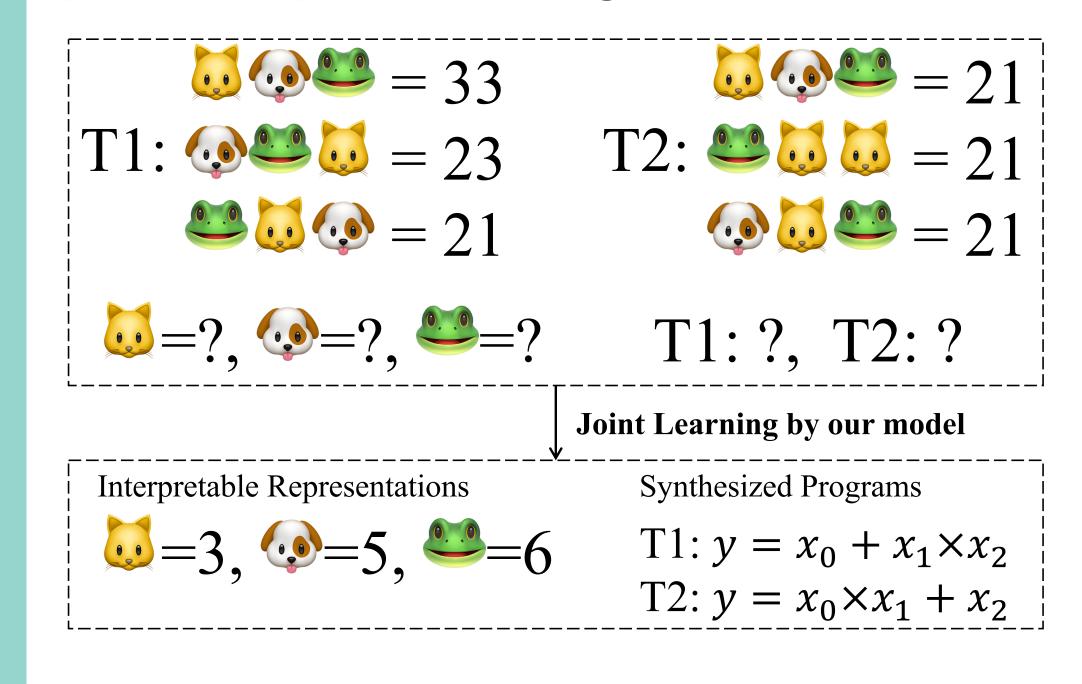
Challenges

- Large combinatory search space;
- containing both
 - continuous neural networks weights;
 - *discrete* programs;
- *Ill-posed problem* for symbol/concept discovery.
 - (e.g., how to prevent neural networks from directly learning the input-output mapping and setting the program to identity?).

Small-scale Task Example

A small-scale that involves both perception and programmatic reasoning. Introducing multi-tasking to alleviate the ill-posed problem for symbol discovery.

Solving inductive reasoning tasks grounded in **perception.** inferring a simple formula with noisy perceptual inputs such as images.



Solving this problem involves jointly learning to

- perceive and parse image input into symbolic form
- reason inductively to recover programs that explain each arithmetic task.

Problem Setup

Jointly learn neural symbol grounder and symbolic programs through weak task supervisions.

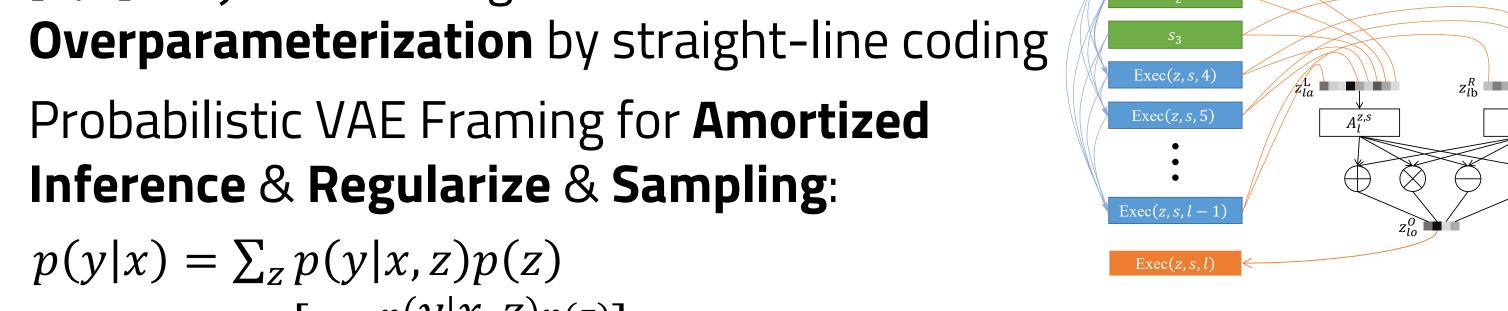
$$g^*(\cdot), z^* = \underset{g(\cdot), z}{arg min} \|y - [z](g(x))\|,$$
 $z's \ entry \in \{0,1\}$

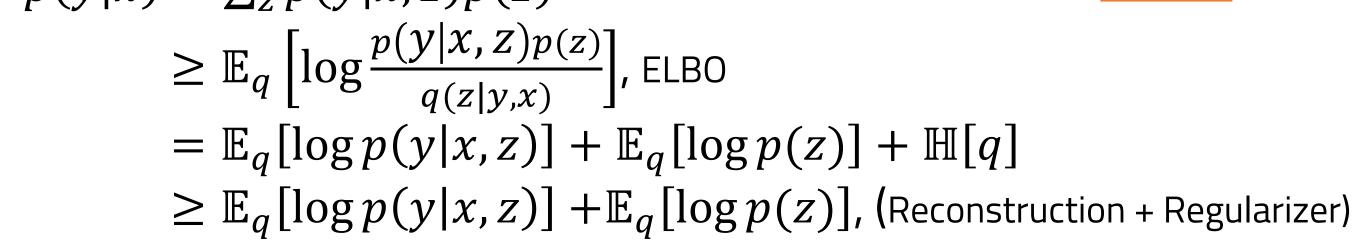
where x is the perception input, y is the output,

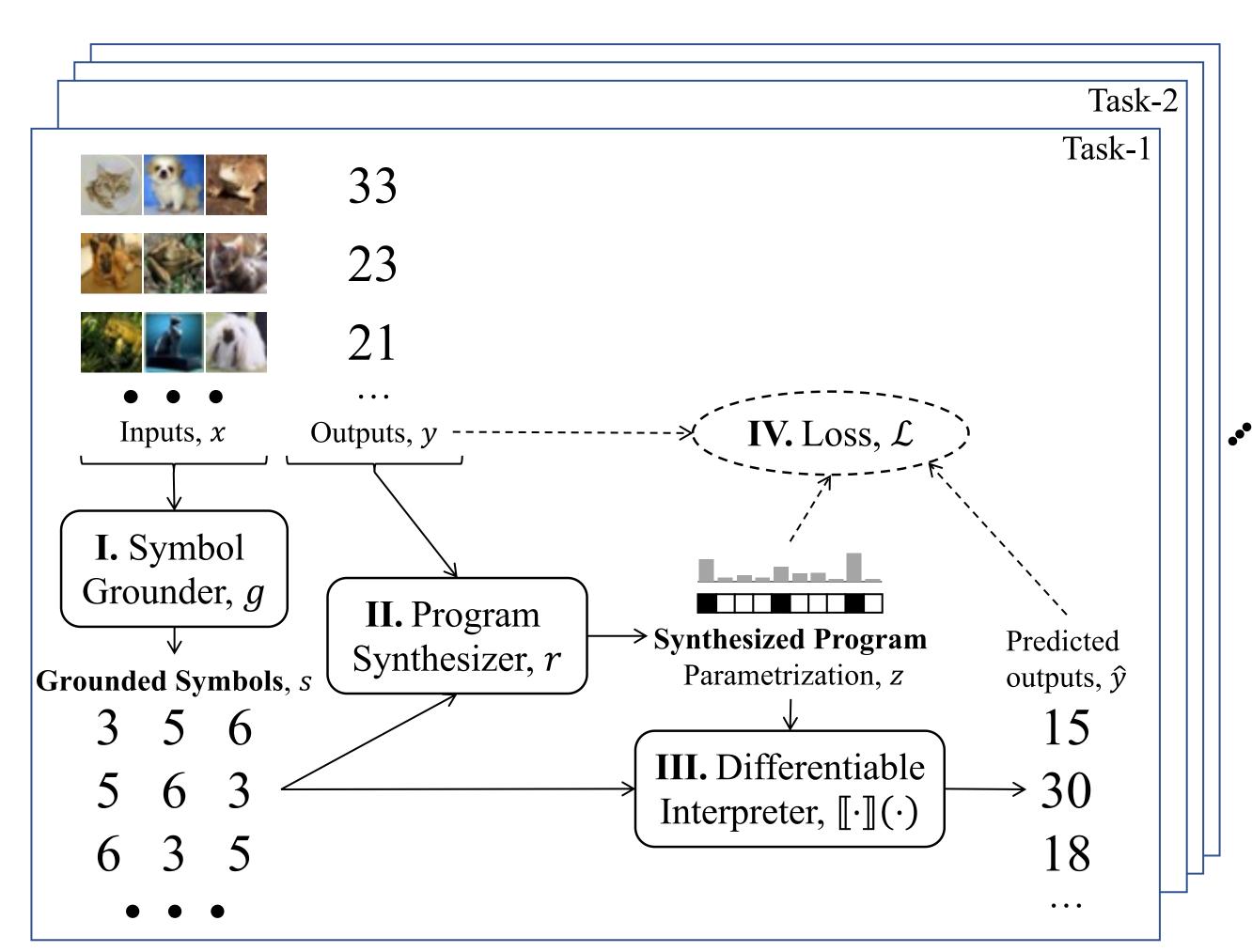
- $g(\cdot)$ is a 'symbol grounder' neural net that generates intermediate symbolic output s = g(x) given the perception input x,
- z is a program to synthesize that transform symbols to predicted output $\hat{y} = [\![z]\!](s)$.

Methodology for ameliorate optimization difficulties

- Relax the space of z's entries from {0,1} to [0,1] for joint learning
- Probabilistic VAE Framing for Amortized







Experimental Results

Metrics for different perspective of models' performances

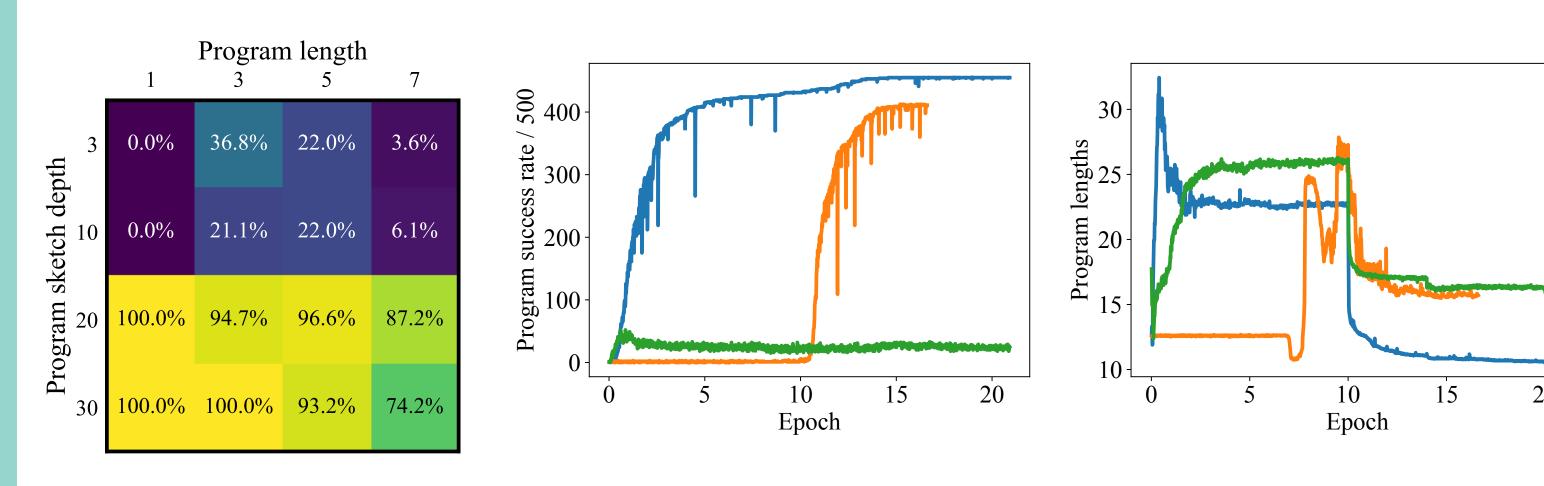
- Program synthesize: program success rate
- Symbol grounding: symbolic loss
- Out-of-distribution generalizability: generalization loss (Train on datasets with digits < 5, while test on digits ≥ 5)

Datasets use CIFAR-10 to build perception inputs. Programs are drawn uniformly from formulas such as (s2+s3)*s1-s2.

	program success rate	symbolic loss	test loss	generalization loss
ROAP (our model)	459 / 500	0.00086	0.11	0.07
w/o program, i.e., CNN+MLP	0 / 500	0.95	0.11	1.03
w/o amortized inference	136 / 500	0.059	0.20	0.19
w/o gumbel-softmax	8 / 500	0.52	0.33	4.40
w/ Syntax-Tree	345 / 500	0.04	0.16	0.22
w/ depth=10	58 / 500	0.90	0.14	2.12
w/ depth=3	56 / 500	1.10	0.16	2.08

Experimental Results show that

- Joint learning of symbols & programs is feasible.
- All techniques are helpful, including multi-tasking with amortized inference, overparameterization, gumbel-softmax, and the program length regularizer.
- Programmatic prior enables much better *out-of-distribution* generalizability of the models.



- Effectiveness of overparameterization: Necessary for good performances; Also see the improvements w.r.t. the relative overparameterization degree.
- Effectiveness of program length prior: Improve interpretability but not hurt performances when successfully learned (blue line); can largely boost the performances when not successfully learned before (orange line) but not always (green line).